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Supplementary Notes 27 

Supplementary Note 1 Previous studies on multi-omics integration 28 

A recent study [1] evaluated 14 single-cell batch-effect correction/integration methods, and 29 

recommended Harmony [2], LIGER [3], and Seurat3.0 [4]. In addition, we included four manifold-30 

alignment based methods Panoma [5], SCOT [6], UnionCom [7] and MMD-MA [8] for 31 

comparison.  32 

Harmony 33 

Harmony [2] uses an iterative clustering approach to align cells from different batches. The 34 

algorithm first combines the batches and projects the data into a dimensionally reduced space using 35 

PCA. It then uses an iterative procedure to remove the multi-dataset specific effects. In our analysis, 36 

we ran Harmony within the Seurat3.0 based on the guide 37 

(http://htmlpreview.github.io/?https://github.com/immunogenomics/harmony/blob/master/docs/S38 

euratV3.html).  39 

Seurat v3.0 40 

Seurat [4] uses CCA to first compute the linear combinations of genes with the maximum 41 

correlation between batches and then adopts mutual nearest neighbor (MNN) to align the cells 42 

between datasets based on identified anchor cells. In our analysis, we used the Seurat package 43 

version 3.0 in the R language environment to perform multi-omics integration, adhering to the 44 

suggested integration workflow 45 

(https://satijalab.org/seurat/v3.2/atacseq_integration_vignette.html).  46 

LIGER 47 

LIGER [3] uses integrative non-negative matrix factorization (iNMF) to first learn a low-48 

dimensional space where each gene is characterized by two sets of factors. The first set contains 49 
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dataset-specific factors, and the second contains shared factors. The shared factor space is then 50 

used to identify similar cell types across datasets by first constructing a shared factor neighborhood 51 

graph to connect cells with similar factor loading patterns. Joint clusters are then identified using 52 

the Louvain community detection algorithm. Thereafter, the factor loading quantiles are 53 

normalized using the largest data batch as a reference to achieve batch-correction. In our work, we 54 

followed the LIGER documentation  55 

(http://htmlpreview.github.io/?https://github.com/MacoskoLab/liger/blob/master/vignettes/Integr56 

ating_scRNA_and_scATAC_data.html). For preprocessing, we used the LIGER preprocessing 57 

functions, where we first selected genes with high variances. We then performed iNMF-based 58 

factorization using an alternating least squares algorithm, followed by data alignment using joint 59 

clustering and quantile alignment. 60 

MMD-MA 61 

MMD-MA performs multiomic data integration by optimizing the objective function with three 62 

components: 1) a maximum mean discrepancy term to make the differently measured points to 63 

have similar distributions in the latent space based on the kernel Gram matrices; 2) a distortion 64 

term to preserve the structure of the data between the input space and the latent space; and 3) a 65 

penalty term to ensure that distortion between the data in the original space and the data mapped 66 

to the low-dimensional space as small as possible. The transformation to the latent space is based 67 

on Gaussian kernel, and thus solely retains cell-cell distance information. 68 

UnionCom 69 

UnionCom first uses the cell-cell distance matrix of each dataset to represent its manifold. It then 70 

aligns the cells across single-cell multi-omics datasets by matching the distance matrices by an 71 

extended version of the unsupervised manifold alignment method GUMA. Finally, it projects the 72 
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distinct unmatched features across single-cell multi-omics datasets by matching the distance 73 

matrices via a matrix optimization method. 74 

SCOT 75 

Like UnionCom, SCOT (single-cell alignment using optimal transport) aims to preserve local 76 

geometry when aligning single-cell data. The algorithm achieves this by constructing a k-nearest 77 

neighbor graph for each dataset. SCOT uses Gromov-Wasserstein optimal transport to find a 78 

probabilistic coupling between the samples of each dataset. Finally. It uses the coupling matrix to 79 

project one single-cell dataset onto another through barycentric projection, thus aligning them.  80 

 81 

Pamona 82 

Pamona formulates the single cell multi-omics datasets as the partial manifold alignment problem 83 

and solves it under the partial Gromov-Wasserstein optimal transport framework. As the “partial” 84 

in its name suggested, it is more flexible in handling sample-specific cells than SCOT. The 85 

integration includes three steps: 1) constructs a weighted k-NN graph of cells of each dataset and 86 

computes the geodesic distance matrix of cells within each dataset; 2) calculates probabilistic 87 

coupling matrices of cells based on the partial Gromov-Wasserstein optimal transport; and 3) 88 

aligns cellular modalities with distinct unmatched features in a common low-dimensional space.   89 



 5 

Supplementary Note 2 Simulation Study 90 

Existing integration methods such as Seurat, LIGER, and Harmony rely on pre-aligning features 91 

across modalities, i.e., compressing cell-peak matrices obtained from scATAC-seq onto cell-gene-92 

activity matrices based on reference genome annotations. BindSC further improves the integration 93 

by considering distal regulatory relations in a de novo fashion.  . The ability of considering and 94 

refining intermodal feature interaction also allows bindSC to adapt more to the underlying biology 95 

and distinguish similar cell populations better than manifold alignment methods such as Matcher, 96 

MMD-MA, UnionCom, SCOT, and Pamona. 97 

 98 

Under our formulation (Methods), Z has features (rows) aligned with X and cells (columns) 99 

aligned with Y. The introduction of Z enables bi-order alignment of the cells and the features, 100 

respectively. 101 

 102 

We systematically simulated a series of datasets to assess how different combinations of proximal 103 

and distal regulatory elements affect the integration. In brief, 1,500 scATAC-seq peaks for 2,000 104 

cells were simulated using Splatter [10] (Additional file 1: Fig. S2a). The cells were uniformly 105 

drawn into 3 types, resulting in 𝑁 = 668, 701, and 631, respectively. Then, 500 gene expressions 106 

were calculated as the weighted mean of both proximal and distal peaks. Each gene is regulated 107 

by three proximal peaks and two distal peaks. We varied the relative strength of distal peaks, 𝑤, 108 

from 0.2 to 0.9, and the strength of proximal peaks is then (1 − 𝑤). The gene activity matrix, 109 

initialized from peaks in gene bodies, was an unweighted sum among the proximal peaks 110 

(Additional file 1: Fig. S2b). Given the simulated scATAC-seq and scRNA-seq data, we used 111 

various methods to integrate the two datasets.  A good approach should be able to generate co-112 
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embeddings in which the cells from the two datasets are mixed according to their cell type 113 

identities. As shown in Additional file 1: Fig. S2c, bindSC successfully integrated the datasets 114 

under all the settings. Seurat maintained the overall population structure but was not able to mix 115 

the data well. Its performance further deteriorated as 𝑤 increases. Similarly, Harmony was able to 116 

maintain the overall population structure but mis-assigned cells to incorrect clusters (mixing colors) 117 

as 𝑤  increases. Most of the other methods failed to produce co-embeddings of the expected 118 

population structure. For example, UnionCom got confused when matching cell types of similar 119 

abundance and swapped cell types (blue and red in Additional file 1: Fig. S2c, 𝑤 = 0.7). 120 

 121 

We also found that the estimated matrix Z achieved a high correlation with the ground truth matrix 122 

within the first 5 iterations (Additional file 1: Fig. S2d). Notably, the correlation was initially 123 

worse for larger 𝑤  (i.e., distal regulation dominant) but quickly improved as Z got updated. 124 

Although the real regulatory relations between ATAC peaks and gene expressions are considerably 125 

more complex and dynamic, this simple simulation experiment proves that bindSC has a clear edge 126 

over other methods in integrating modalities and inferring underlying regulatory relations across 127 

a range of conditions.  128 

 129 

To further test the robustness of bindSC w.r.t. variable data dimensions, we varied the number of 130 

ATAC peaks from 1,000 to 10,000 while keeping the number of genes at 500. This simulated a 131 

range of two to 20-fold imbalance between the numbers of features in the two modalities. The 132 

results indicated the robustness of bindSC over the range of the parameters (Additional file1: Fig. 133 

S2e).  134 
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Supplementary Note 3 Effect of parameters 𝑬,a and l on integration results 135 

There are three hyperparameters in bindSC: 1) dimensionality E in the latent space, 2) the couple 136 

coefficient 𝛼 representing the weight of initial modality fusion matrix 𝒁(𝟎) and 3) the scale factor 137 

l	 balancing the contribution of each modality. As a general suggestion, we recommend starting E 138 

with the minimal number of principle components (PCs) used in single modality clustering. In two 139 

benchmarking datasets, we tested a range of E (Additional file1: Fig. S4i on mouse retina data and 140 

Additional file 1: Fig. S8e on human bone marrow data). We noticed that performance of all 141 

methods is relatively robust to the choice of E when E ≥10, except for LIGER on mouse retina 142 

data. As shown, bindSC outperformed all the other methods regardless of E.  143 

 144 

We range 𝛼 from 0 to 1 and l from 0 to 1 with the step size 0.1. Selection of 𝛼 and l	dependent 145 

on two integration metrics: 1) Silhouette score and 2) Alignment mixing score between two 146 

modalities. None of the metrics rely on labels and thus can be applied to new unlabeled data to 147 

determine the best value of the parameters. Additional file 1: Fig. S14 show the value distribution 148 

of two integration metrics with different levels of 𝛼 and l on two benchmarking datasets used in 149 

this study. Overall, the silhouette and alignment scores are robust to 𝛼 and l, except for some 150 

specific cases with  𝛼 = 1	𝑜𝑟	0 and l = 1	𝑜𝑟	0.  151 

 152 

  153 
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Supplementary Note 4 The iteration process of bindSC  154 

With specified values of E,𝛼  and l , bindSC repeats equations (4) to (7) in Methods, until 155 

‖𝒁𝒊%𝟏 − 𝒁𝒊‖'(/‖𝒁𝒊‖'( < ∆ , where 𝑖  is the iteration index and ∆  is the termination condition 156 

specified by users (default = 0.01). Additional file1: Fig. S15 shows the change of objective 157 

function cost over each step of the iteration. In our four benchmarking datasets, the iteration 158 

converged in less than 15 steps. In most cases, convergence plateaued within 5 iterations.   159 
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Supplementary Note 5 Effect of initial fusion matrix 𝒁(𝟎) on integration results 160 

BindSC requires the initial modality fusion matrix 𝒁(𝟎)  as input to link 𝑿  and 𝒀 . It can be 161 

considered as the projection of 𝒀 to the feature space of 𝑿. For integration of scRNA-seq and 162 

scATAC-seq data, the modality fusion matrix 𝒁 is usually derived from scATAC-seq profiles by 163 

summing reads in gene bodies plus upstream 2kb. We also considered other ways for initialization 164 

by1) aggregating reads in gene bodies plus co-accessible peaks within 500kb identified from 165 

Cicero [11], 2) aggregating reads with weighs inferred by the regulatory potential (RP) model from 166 

MAESTRO [12] and, 3) using the gene score model from ArchR [13]. To assess the performance 167 

of each gene score model, we run bindSC, Seurat, LIGER, and Harmony to integrate scATAC-seq 168 

and scRNA-seq data obtained from the same types and then evaluate the integration performance 169 

based on the correlation between ground truth and the imputed RNA profiles. Results for the mouse 170 

retina data are shown in Additional file1: Fig. S16. Note that including the gene score model from 171 

MAESTRO and that from ArchR did not improve the integration performance in our study.   172 
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